Температура кипения метилового спирта


#1 Верно ли, если я буду кипятить брагу при 78,4*С, получу спирт?
Это заблуждение. При этой температуре кипит чистый спирт. Брага содержит лиш до 16% спирта, и её температура кипения гораздо выше. Если нагреть брагу до 78,4*С, кипения не будет. Спирт конечно будет испарятся, но медленно. Так же будет испарятся и вода, и всё остальное, содержащееся в браге.

#2 Раз спирт и примеси кипят при разной температуре, верно ли, что их легко разделить
при перегонке, меняя приёмные ёмкоости?

Нет, это заблуждение. Все примеси идут одновременно, вопрос только в том, что головная часть перегона обогощена легколетучими примесями, хвостовая — труднолетучими сивушными маслами, а в средней пищевой части вредных примесей минимум, но они всё же есть. Это закон физики. Также и "голова" и "хвост" содержат спирт, и отбрасывание неизбежно ведет к снижению выхода спирта из бражки. Общее количество примесей вообще не превышают 0,5-1% от объема спирта. Однако они имеют сильный запах и ядовиты, при превышении норм, делают спирт непригодным для употребления.


#3 Головная фракция самогона обязательно содержит вреднейший метанол (метиловый спирт), верно?
Бражка на чистом сахаре, самая распространённая, метанола практически не содержит, поскольку нет источника его образования. Химия-точная наука.
Насчёт метанола верно только для зерновых и особенно плодовых бражек. И ещё, хоть метанол и имеет температуру кипения гораздо ниже, чем у этанола(этилового спирта), его физические свойства таковы, что при дистилляции
метанол не является выраженной головной фракцией, а присутствует во всех фракциях перегона.
Подробнее здесь

#4 Если спирт медицинский — он заведомо питьевой?
Это заблуждение. Медицинский спирт бывает разный. И существуют разные виды этих спиртов, требования по ним установлены "фармакопейными статьями". Одна статья устанавливает требования к спирту, который применяется для изготовления лекарственных препаратов внутреннего употребления, и этот спирт можно условно считать "питьевым".
 Но есть медицинские спирты для наружного применения, это уже другая статья. В чистом виде, для дезинфекции. И для изготовления лекарств наружного применения. В этом случае требования ниже, и допускается применение синтетического спирта. Пить или не пить? Решать Вам!

#5 Я добавил в водку (раствор спирта) марганцовку — выпал осадок, значит в продукте много примесей и качество низкое?
При добавлении в раствор любого спирта марганцовки происходит ряд химических реакций, результатом которых является выпадение осадка окиси марганца.


о вещество нелетуче и при перегонке в дистиллят не переходит. Разница в качестве спирта и наличии в нем примесей сказывается только на скорости его (осадка) образования — проба Ланга на окисляемость. Пить, однако, обработанный марганцовкой спирт не стоит, его необходимо повторно перегнать.

www.homedistiller.ru

Получение

До 1960-х годов метанол синтезировали только на цинкхромовом катализаторе при температуре 300—400 °C и давлении 25—40 МПа (= 250—400 Бар = 254,9—407,9 кгс/см²). Впоследствии распространение получил синтез метанола на медьсодержащих катализаторах (медьцинкалюмохромовом, медь-цинкалюминиевом или др.) при 200—300 °C и давлении 4—15 МПа (= 40—150 Бар = 40,79—153 кгс/см²).

Современный промышленный метод получения — каталитический синтез из оксида углерода(II) (CO) и водорода (2H2) при следующих условиях:

  • температура — 250 °C,
  • давление — 7МПа (= 70 атм = 70 Бар = 71,38 кгс/см²),
  • катализатор — смесь ZnO (оксид цинка) и CuO (оксид меди(II)):

До промышленного освоения каталитического способа получения метанол получали при сухой перегонке дерева (отсюда его название «древесный спирт»). В данное время этот способ имеет второстепенное значение.


Также известны схемы использования с этой целью отходов нефтепереработки, коксующихся углей.

CO2 + 3H2 <—> CH3OH + H2O + 49.53 кДж/моль

H2O + CO <—> CO2 + H2 + 41.2 кДж/моль

Молекулярная формула — CH4O или CH3—OH, а структурная: Methanol flat structure.png В настоящее время метиловый спирт получают синтетическим способом из монооксида углерода и водорода при температуре 300—400 °C и давления 300—500 атм в присутствии катализатора — смеси оксидов цинка, хрома и др. Сырьем для синтеза метанола служит синтез-газ (CO + H2), обогащенный водородом: :CO + 2 H2 → CH3OH[2]

(1) mathrm{CH}_4 + mathrm{H}_2mathrm{O} rightleftharpoons mathrm{CO} + 3 ; mathrm{H}_2 ; Delta H (300 ; mathrm{K}) = 206 ; mathrm{kJ}/mathrm{mol},
(2) mathrm{CO} + mathrm{H}_2mathrm{O} rightleftharpoons mathrm{CO}_2 + mathrm{H}_2 ; Delta H (300 ; mathrm{K}) = -41{,}2 ; mathrm{kJ}/mathrm{mol}.

Производство метанола (в тыс. тон):


год США Германия Мир Цена продажи($/т)
1928 24 18 140 84,7
1936 97 93 305 88,9
1950 360 120 349 83,1
1960 892 297 3930 99,7
1970 2238 нет данных 5000 89,7
1980 3176 870 15000 236,1
2004 3700 2000 32000 270

Крупнейшим производителем метанола в России является ОАО «Метафракс» в Губахе.

Применение

В органической химии метанол используется в качестве растворителя.

Метанол используется в газовой промышленности для борьбы с образованием гидратов (из-за низкой температуры замерзания и хорошей растворимости). В органическом синтезе метанол применяют для выпуска формальдегида, формалина, уксусной кислоты и ряда эфиров (например, МТБЭ и ДМЭ), изопрена и др.

Наибольшее его количество идёт на производство формальдегида, который используется для производства карбамидоформальдегидных и фенолформальдегидных смол. Значительные количества CH3OH используют в лакокрасочной промышленности для изготовления растворителей при производстве лаков. Кроме того, его применяют (ограниченно из-за гигроскопичности и отслаивания) как добавку к жидкому топливу для двигателей внутреннего сгорания. Используется в топливных элементах.


Благодаря высокому октановому числу, что позволяет увеличить степень сжатия до 16 и большей на 20 % энергетической мощностью заряда на основе метанола и воздуха, метанол используется для заправки гоночных мотоциклов и автомобилей. Метанол горит в воздушной среде, и при его окислении образуется двуокись углерода и вода:

2CH_3OH + 3O_2 to 2CO_2 + 4H_2O

Для получения биодизеля растительное масло переэтерифицируется метанолом при температуре 60 °C и нормальном давлении приблизительно так: 1 т масла + 200 кг метанола + гидроксид калия или натрия.

Во многих странах метанол применяется в качестве денатурирующей добавки к этанолу при производстве парфюмерии. В России использование метанола в потребительских товарах запрещено.

При добыче газа гидраты могут образовываться в стволах скважин, промысловых коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли).


Работа топливных элементов основана на реакции окисления метанола на катализаторе в диоксид углерода. Вода выделяется на катоде. Протоны (H+) проходят через протонообменную мембрану к катоду где они реагируют с кислородом и образуют воду. Электроны проходят через внешнюю цепь от анода к катоду снабжая энергией внешнюю нагрузку.

Реакции:

На аноде CH3OH + H2O → CO2 + 6H+ + 6e

На катоде 1.5O2 + 6H+ + 6e → 3H2O

Общая для топливного элемента: CH3OH + 1,5O2 → CO2 + 2H2O

Получение муравьиной кислоты окислением метанола:

Получение муравьиной кислоты окислением метанола

Получение диметилового эфира дегидратацией метанола при 300—400 °C и 2-3 МПа в присутствии гетерогенных катализаторов — алюмосиликатов — степень превращения метанола в диметиловый эфир — 60 % или цеолитов — селективность процесса близка к 100 %. Диметиловый эфир (C2H6O) — экологически чистое топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90 % меньше, чем у бензина. Цетановое число диметилового дизеля более 55, при том что у классического нефтяного 38-53.

Метил-трет-бутиловый эфир получается при взаимодействии метанола с изобутиленом в присутствии кислых катализаторов (например, ионообменных смол).


MTBE-Synthese (Reaktionsgleichung).png

Метил-трет-бутиловый эфир (C5H12O) применяется в качестве добавки к моторным топливам, повышающей октановое число бензинов (антидетонатор). Максимальное законодательное содержание МТБЭ в бензинах Европейского союза — 15 %, в Польше — 5 %. В России в среднем составе бензинов содержание МТБЭ составляет до 12 % для АИ92 и до 15 % для АИ95, АИ98.

Гомологизация метанола

Гомологизация, то есть превращение органического соединения в свой гомолог путём внедрения одной или нескольких метиленовых групп, для спиртов была впервые осуществлена в 1940 году — на основе метанола каталитическим путём под воздействием высокого давления был синтезирован этанол[3]:

mathsf{CH_3OH+CO+2H_2} xrightarrow{Co_2(CO)_8} mathsf{CH_3CH_2OH+H_2O}

Реакция гомологизации по своему механизму близка реакции гидроформилирования алкенов и в настоящее время с помощью модифицированных катализаторов кобальта и рутения и добавления йодид-ионов в качестве промоторов удаётся добиться 90 % выхода по этанолу[3].

Исходный метанол также получают из окиси углерода (катализаторы на основе оксидов меди и цинка, давление 5-10 МПа, температура 250 °C)[3], так что общая схема выглядит следующим образом:


mathsf{C+H_2O}rightarrowmathsf{CO+H_2}rightarrowmathsf{CH_3OH} xrightarrow[- H_2O]{CO + H_2} mathsf{CH_3CH_2OH}

Побочными продуктами реакции в случае синтеза этанола будут ацетальдегид, этилен и диэтиловый эфир.

В 1940 году впервые была осуществлена катализируемая оксидом кобальта при давлении 600 атм реакция метанола с синтез-газом с образованием в качестве основного продукта этанола… Впоследствии эта реакция, названная гомологизацией, вызвала огромный интерес у химиков. Ее привлекательность связана с возможностью получения этилена из угольного сырья Применение в качестве катализаторов карбонила кобальта Со2(СО)8 позволило понизить давление до 250 атм, при этом степень превращения метанола составила 70 %, а основной продукт — этанол образовывался с селективностью 40 %. В дальнейшем были предложены более селективные катализаторы на основе соединений кобальта и рутения с добавками фосфиновых лигандов и было установлено, что реакцию можно ускорить с помощью введения промоторов — иодид-ионов. В настоящее время удалось достичь селективности по этанолу 90 %. Хотя механизм гомологизации до конца не установлен, можно считать, что он близок к механизму карбонилирования метанола.


[4]

Биометанол

Промышленное культивирование и биотехнологическая конверсия морского фитопланктона рассматривается как одно из наиболее перспективных направлений в области получения биотоплива.[5]

В начале 80-х рядом европейских стран совместно разрабатывался проект, ориентированный на создание промышленных систем с использованием прибрежных пустынных районов. Осуществлению этого проекта помешало общемировое снижение цен на нефть.

Первичное производство биомассы осуществляется путём культивирования фитопланктона в искусственных водоёмах, создаваемых на морском побережье.

Вторичные процессы представляют собой метановое брожение биомассы и последующее гидроксилирование метана с получением метанола.

Основными доводами в пользу использования микроскопических водорослей являются следующие:

  • высокая продуктивность фитопланктона (до 100 т/га в год);
  • в производстве не используются ни плодородные почвы, ни пресная вода;
  • процесс не конкурирует с сельскохозяйственным производством;
  • энергоотдача процесса достигает 14 на стадии получения метана и 7 на стадии получения метанола;

С точки зрения получения энергии данная биосистема имеет существенные экономические преимущества по сравнению с другими способами преобразования солнечной энергии.

Метанол в качестве топлива

При применении метанола в качестве топлива следует отметить, что объемная и массовая энергоемкость (теплота сгорания) метанола (удельная теплота сгорания = 22,7 МДж/кг) на 40—50 % меньше, чем бензина, однако при этом теплопроизводительность спиртовоздушных и бензиновых топливовоздушных смесей при их сгорании в двигателе различается незначительно по той причине, что высокое значение теплоты испарения метанола способствует улучшению наполнения цилиндров двигателя и снижению его теплонапряженности, что приводит к повышению полноты сгорания спиртовоздушной смеси. В результате этого рост мощности двигателя повышается на 10—15 %. Двигатели гоночных автомобилей работающих на метаноле с более высоким октановым числом чем бензин имеют степень сжатия, превышающую 15:1, в то время как в обычном ДВС с искровым зажиганием степень сжатия для неэтилированного бензина как правило, не превышает 11,5:1. Метанол может использоваться как в классических двигателях внутреннего сгорания, так и в специальных топливных элементах для получения электричества.

Топливо Плотность
энергии
Смесь воздуха
с топливом
Удельная
энергия
смеси воздуха

с топливом

Удельная теплота
испарения
Октановое число (RON) Октановое число (MON)
Бензин 32 МДж/л 14,6 2,9 МДж/кг воздух 0,36 МДж/кг   91—99   81—89
Бутиловый спирт 29,2 МДж/л 11,1 3,2 МДж/кг воздух 0,43 МДж/кг   96   78
Этанол 19,6 МДж/л   9,0 3,0 МДж/кг воздух 0,92 МДж/кг 132   89
Метанол 16 МДж/л   6,4 3,1 МДж/кг воздух 1,2 МДж/кг 156 92

Недостатки

  • Метанол травит алюминий. Проблемным является использование алюминиевых карбюраторов и инжекторных систем подачи топлива в ДВС. Это относится в основном к метанолу-сырцу, содержащему значительные количества примесей муравьиной кислоты и формальдегида. Технически чистый метанол, содержащий воду, начинает реагировать с алюминием при температуре выше 50 °C, а с обычной углеродистой сталью не реагирует вовсе.
  • Гидрофильность. Метанол втягивает воду, что является причиной расслоения топливных смесей бензин-метанол.
  • Метанол, как и этанол, повышает пропускную способность пластмассовых испарений для некоторых пластмасс (например, плотного полиэтилена). Эта особенность метанола повышает риск увеличения эмиссии летучих органических веществ, что может привести к уменьшению концентрации озона и усилению солнечной радиации.
  • Уменьшенная летучесть при холодной погоде: моторы, работающие на чистом метаноле, могут иметь проблемы с запуском при температуре ниже +10 °C и отличаться повышенным расходом топлива до достижения рабочей температуры. Данная проблема однако, легко решается добавлением в метанол 10—25 % бензина.

Низкий уровень примесей метанола может быть использован в топливе существующих транспортных средств с использованием надлежащих ингибиторов коррозии. Т. н. европейская директива качества топлива (European Fuel Quality Directive) позволяет использовать до 3 % метанола с равным количеством присадок в бензине, продаваемoм в Европе. Сегодня в Китае используется более 1000 млн галлонов метанола в год в качестве транспортного топлива в смесях низкого уровня, используемых в существующих транспортных средств, а также высокоуровневые смеси в транспортных средствах, предназначенных для использования метанола в качестве топлива.

Помимо применения метанола в качестве альтернативы бензина существует технология применения метанола для создания на его базе угольной суспензии которая в США имеет коммерческое наименование «метакол» (methacoal[7]). Такое топливо предлагается как альтернатива мазута, широко используемого для отопления зданий (Топочный мазут). Такая суспензия в отличие от водоуглеродного топлива не требует специальных котлов и имеет более высокую энергоемкость. С экологической точки зрения такое топливо имеет меньший «углеродный след»[8], чем традиционные варианты синтетического топлива получаемого из угля с использованием процессов, где часть угля сжигается во время производства жидкого топлива.

Свойства метанола и его реакции

Метанол — бесцветная жидкость с запахом, напоминающим запах этилового спирта, но более слабым. Ощущается как запах вина. Температура кипения 64,7°.

Удельный вес при 0°/0° = 0,8142 (Копп); при 15°/15° = 0,79726; при 25°/25° = 0,78941 (Perkin); при 64,8°/4° = 0,7476 (Шифф); при 0°/4° = 0,81015; при 15,56°/4° = 0,79589 (Dittmar и Fawsitt). Капиллярная постоянная при температуре кипения a ² =5,107 (Шифф); Критическая температура 241,9° (Шмидт). Упругость пара при 15° = 72,4 мм; при 29,3° = 153,4 мм; при 43° = 292,4 мм; при 53° = 470,3 мм; при 65,4° = 756,6 мм (Д. Коновалов). Теплота горения равна 170,6, теплота образования 61,4 (Штоман, Клебер и Лангбейн).

Метанол смешивается во всех отношениях с водой, этиловым спиртом и эфиром; при смешении с водой происходит сжатие и разогревание. Горит синеватым пламенем. Подобно этиловому спирту — сильный растворитель, вследствие чего во многих случаях может заменять этиловый спирт. Безводный метанол, растворяя небольшое количество медного купороса, приобретает голубовато-зеленое окрашивание, поэтому безводным медным купоросом нельзя пользоваться для открытия следов воды в метаноле; но он не растворяет CuSO4.7H2O (Клепль).

Метанол (в отличие от этанола) с водой не образует азеотропной смеси, в результате чего смеси вода-метанол могут быть разделены ректификационной перегонкой. Температура кипения водных растворов метанола:

Methanol Mole % Т_кип, 760 мм.рт.ст. °C
0 100
5 92.8
10 88.3
15 84.8
20 82
25 80.1
30 78.2
35 76.8
40 75.6
45 74.5
50 73.5
55 72.4
60 71.6
65 70.7
70 69.8
75 68.9
80 68
85 67.1
90 66.3
95 65.4
100 64.6

Метанол дает со многими солями соединения, подобные кристаллогидратам (сольваты), например: CuSO4 ∙ 2СН3ОН; LiCl ∙ 3СН3ОН; MgCl2 ∙ 6СН3ОН; CaCl2 ∙ 4СН3ОН представляет собой шестисторонние таблицы, разлагаемые водой, но не разрушаемые нагреванием до 100° (Kane). Соединение ВаО ∙ 2СН3ОН ∙ 2Н2O получается в виде блестящих призм при растворении ВаО в водном Метаноле и испарении на холоде полученной жидкости при комнатной температуре (Форкранд).

С едкими щелочами метанол образует соединения 5NaOH ∙ 6СН3ОН; 3KOH ∙ 5СН3OH (Геттиг). При действии металлических калия и натрия легко дает алкоголяты, присоединяющие к себе кристаллизационный метанол и иногда воду.

При пропускании паров метанола через докрасна накаленную трубку получается C2H2 и др. продукты (Бертло). При пропускании паров метанола над накаленным цинком получается окись углерода, водород и небольшие количества болотного газа (Jahn). Медленное окисление паров метанола при помощи раскаленной платиновой или медной проволоки представляет лучшее средство для получения больших количеств формальдегида: 2СН3ОН+О2=2НСНО+2Н2О. При действии хлористого цинка и высокой температуры метанол дает воду и алканы, а также небольшие количества гексаметилбензола (Лебедь и Грин). Метанол, нагретый с нашатырем в запаянной трубке до 300°, дает моно-, ди- и триметиламины (Бертло).

При пропускании паров метанола над KOH при высокой температуре выделяется водород и образуются последовательно муравьинокислый, щавелевокислый и, наконец, углекислый калий.

Концентрированная серная кислота дает метилсерную кислоту CH3HSO4, которая при дальнейшем нагревании с Метанолом дает метиловый эфир (см.). При перегонке метанола с избытком серной кислоты в отгон переходит диметилсерная кислота (CH3)2SO4. При действии серного ангидрида SO3 получается CH(OH)(SO3H)2 и CH2(SO3H)2 (см. Метилен).

Метанол при действии соляной кислоты, пятихлористого фосфора и хлористой серы дает хлористый метил СН3Cl. Действием HBr и H2SO4 получают бромистый метил. Подкисленный 5%-й серной кислотой и подвергнутый электролизу, метанол дает СО2, СО, муравьинометиловый эфир, метилсерную кислоту и метилаль СН2(ОСН3)2 (Ренар). При нагревании метанола с хлористо-водородными солями ароматических оснований (анилином, ксилидином, пиперидином) легко происходит замещение водорода в бензольном ядре метилом (Гофман, Ладенбург); реакция имеет большое техническое значение при приготовлении метилрозанилина и других искусственных пигментов.

Нахождение в природе

В свободном состоянии[9] метиловый спирт встречается в природе лишь изредка и в очень небольших количествах (например в эфирных маслах), но производные его распространены довольно широко. Так, например, многие растительные масла содержат сложные эфиры метилового спирта: масла гаултерии — метиловый эфир салициловой кислоты С6H4(OH)COOCH3, масло жасмина — метиловый эфир антраниловой кислоты С6H4(NH2)COOCH3. Простые эфиры метилового спирта чрезвычайно часто встречаются среди природных веществ, например природных красителей, алкалоидов и т. п.

В промышленности метиловый спирт раньше получали исключительно путём сухой перегонки дерева. В жидких погонах, так называемом «древесном уксусе», наряду с уксусной кислотой (10 %), ацетоном (до 0,5 %), ацетальдегидом, аллиловым спиртом, метилацетатом, аммиаком и аминами содержится также 1,5-3 % метилового спирта. Для отделения уксусной кислоты продукты сухой перегонки пропускают через горячий раствор известкового молока, задерживающий её в виде уксуснокислого кальция. Значительно труднее отделить метиловый спирт от ацетона, так как температуры кипения их очень близки (ацетон, т.кип.56,5°; метиловый спирт, т.кип. 64,7°). Все же путём тщательной ректификации на соответствующих колоннах в технике удается почти полностью отделить метиловый спирт от сопутствующего ему ацетона. Неочищенный метиловый спирт называется также «древесным спиртом».

Токсичность

Hazard T.svg Метанол — яд, действующий на нервную и сосудистую системы. Токсическое действие метанола обусловлено так называемым «летальным синтезом» — метаболическим окислением в организме до очень ядовитого формальдегида.

Приём внутрь 5—10 мл метанола приводит к тяжёлому отравлению (одно из последствий — слепота), а 30 граммов и более — к смерти. Предельно допустимая концентрация метанола в воздухе равна 1 мг/м³ (у изопропилового спирта 10 мг/м³[10], у этанола — 5 мг/м³)[11].

Наиболее легкая форма отравления характеризуется наличием головной боли, общей слабостью, недомоганием, ознобом, тошнотой, рвотой. Поэтому опасен для жизни не только метанол, но и жидкости, содержащие этот яд даже в сравнительно небольшом количестве.

Особая опасность метанола связана с тем, что по запаху и вкусу он неотличим от этилового спирта, из-за чего и происходят случаи его употребления внутрь. В домашних условиях метанол можно отличить следующим способом: свернуть из толстой медной проволоки спираль и накалить ее на огне до красного свечения; при опускании спирали в метанол происходит его каталитическое окисление с выделением формальдегида, обладающего весьма резким запахом; этанол же такого эффекта не дает (будет напоминать запах прелых яблок). Второй способ — йодоформная реакция: с этиловым спиртом выпадет йодоформ желтого цвета, а с метанолом ничего не выпадает (реакция не подходит для определения содержания метанола в растворе этанола)[12].

Как указано в руководстве для врача скорой медицинской помощи, при отравлении метанолом антидотом является этанол, который вводится внутривенно в форме 10 % раствора капельно или 30—40 % раствора перорально из расчёта 1—2 грамма раствора на 1 кг веса в сутки.[13] Полезный эффект в этом случае обеспечивается отвлечением АДГ I на окисление экзогенного этанола.[14]

Следует учесть, что при недостаточно точном диагнозе за отравление метанолом можно принять алкогольную интоксикацию, отравление дихлорэтаном или четырёххлористым углеродом — в этом случае введение дополнительного количества этилового спирта опасно.[13]

Случаи массового отравления

  • 1-7 мая 1980 года в городе Оренбург в результате кражи из неохраняемой железнодорожной цистерны большого количества метанола произошло массовое отравление людей как в самом Оренбурге, так и в городах и посёлках области — Соль-Илецке, Саракташе и т.д. В результате отравления более 50 человек погибли, сотни были госпитализированы. Число потерявших зрение и ставших инвалидами вследствие токсического поражения центральной и вегетативной нервной системы неизвестно. Официальных данных о данном случае массового отравления до сих пор нет в открытой печати.
  • 9-10 сентября 2001 года на западе Эстонии, в городе Пярну произошло массовое отравление метиловым спиртом. В результате отравления 68 человек погибли, 40 человек стали инвалидами II степени (в связи с потерей зрения и/или острого поражения мозга и нервной системы) и 3 человека получили инвалидность I степени.
  • В 2010 году в России участились случаи продажи фальсифицированной незамерзающей жидкости для омывателей стёкол автомобилей: она содержит метиловый спирт и может негативно влиять на здоровье водителей, вызывая хроническое отравление парами метанола (при попадании жидкости на кожу при заливке жидкости в бачок, а также за счёт проникновения паров в салон автомобиля)[15]. В Европейском Союзе ограничения на использование метанола в незамерзающей жидкости нет.
  • В мае-июле 2011 года 6 российских туристов скончались от отравления метанолом в Турции. Закончившийся трагедией яхт-тур был организован компанией в Бодруме 26-27 мая. С 28 мая в больницы начали поступать российские туристы с жалобами на симптомы острого отравления. Выяснилось, что в напитках, в частности, в коктейле «виски с колой», который употребляли туристы, содержался технический спирт — метанол. Кроме того, прогулочная яхта не имела лицензии на выход в море.
  • В сентябре 2012 года в Чехии расследуют «метиловое дело» — так пресса назвала историю о массовом отравлении контрафактным алкоголем в Чехии за последние 30 лет. Погибли 27 человек, десятки в больницах. Еще четверо умерли в соседней Польше. Ядовитую смесь разливали в бутылки из-под напитка «Туземак» — это чешский аналог рома.[16]

См. также

  • Гидрат метана
  • Экономика метанола
  • Железо- Комплексы железа, встречаются, в ферменте метан-моноксигеназе, окисляющем метан в метанол, в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК.
  • Мессершмитт Ме.163 Комета — немецкий ракетный истребитель-перехватчик времён Второй мировой войны. Me-163 имел жидкостный ракетный двигатель, в который подавалась 80-процентная перекись водорода и жидкий катализатор (раствор перманганата калия либо смесь метанола, гидразин-гидрата и воды). В камере сгорания перекись водорода разлагалась с образованием большого объёма перегретой парогазовой смеси, создавая мощную реактивную тягу.

dic.academic.ru

Кипение оС Метанол 64.7
Метиловый спирт, метанол СНзОН является простейшим представителем предельных одноатомных спиртов. В свободном состоянии в природе встречается редко и в очень небольших количествах (например, в эфирных маслах) . Его производные, наоборот, содержатся во многих растительных маслах (сложные эфиры) , природных красителях, алкалоидах (простые эфиры) и т. д. При обычных условиях это бесцветная, легколетучая, горючая жидкость, . иногда с запахом, напоминающим запах этилового спирта. На организм человека метанол действует опьяняющим образом и является сильным ядом, вызывающим потерю зрения и, в зависимости от дозы, смерть. Физические характеристики метанола при нормальных условиях. следующие: Молекулярный вес …32,0 Плотность, г/см8 …0,8100 Вязкость, мПа-с …0,817 Температура кипения, °С …64,7 Температура плавления, °С …—97,68 Теплота парообразования, ккал/моль …8,94 Теплота сгорания, ккал/моль жидкого …173,65 газообразного…. 177,40 Плотность и вязкость метанола уменьшаются при повышении температуры таким образом: —40 °С —20 °С О °С 20 °С 40 °С 60 °С Плотность, г/см3 …0,8470 0,8290 0,8100 0,7915 0,7740 0,7555. Вязкость, мПа. с. ..1,750 1,160 0,817 0,597 0,450 0,350Метанол при стандартных условиях имеет незначительное давление насыщенных паров. При повышении температуры давление насыщенных паров резко увеличивается».’ Так, при увеличении температуры с 10 до 60 °С давление насыщенных паров повышается от 54,1 до 629,8 мм рт. ст. , а при 100 °С оно составляет 2640 мм рт. ст. углеводородами. Он хорошо поглощает пары воды, двуокись углерода и некоторые другие вещества. Следует указать на способность метанола хорошо растворять большинство известных газов и паров. Так, растворимость гелия, неона, аргона, кислорода в метаноле при стандартных условиях выше, чем растворимость их в ацетоне, бензоле, этиловом спирте, циклогексане и т. д. Растворимость всех этих газов при разбавлении метанола водой уменьшается Высокой растворимостью газов широко пользуются в промышленной практике, применяя метанол и его растворы в качестве поглотителя для извлечения примесей из технологических газов. Свойства растворов метанола в смеси с другими веществами значительно отличаются от свойств чистого метилового спирта. Интересно рассмотреть изменение свойств системы метанол — вода. Температура кипения водных растворов метанола закономерно увеличивается при повышении концентрации воды и давления. Температура затвердевания растворов по мере увеличения концентрации метанола понижается: —54 °С при содержании 40% СНзОН и —132°С при 95% СНзОН. Плотность водных растворов метанола увеличивается при понижении температуры и почти равномерно уменьшается с увеличением концентрации метанола от плотности воды до плотности »спирта при измеряемой температуре. Зависимость вязкости от концентрации метанола имеет при всех исследованных температурах максимум при содержании СНзОН около 40%. В точке максимума вязкость раствора больше вязкости чистого метанола. Метанол смешивается во всех отношениях со значительным числом органических соединений. Со многими из них он образует азеотропные смеси — растворы, перегоняющиеся без изменения состава и температуры кипения, т. е. без разделения; К настоящему времени известно свыше 100 веществ, в числе которых имеются и соединения, обычно присутствующие в метаноле-сырце. К этим веществам, например, относятся ацетон, метилацетат, метилэтилкетон, метилпропионат и некоторые другие. Необходимо отметить, что азеотропные смеси с содержанием таких соединений, как ме-тилэтилкетон, метилпропионат, пропилформиат, изобутилформиат и ряд других имеют температуру кипения, близкую к температуре кипения чистого метанола (62—64,6 °С). Метанол сочетает свойства очень слабого основания и еще более слабой кислоты, что обусловлено наличием алкильной и гидро-ксильной групп. При окислении метанола кислородом

otvet.mail.ru

Теоретические аспекты

Температура кипения и летучесть примесей

Самое распространенное заблуждение среди начинающих самогонщиков гласит, что примеси испаряются пропорционально своей температуре кипения. На самом деле это в корне не так: летучесть примесей, то есть их способность покидать кипящую жидкость, никак не связана с температурами кипения этих примесей.

Рассмотрим классический пример о метаноле и изоамилоле. Пусть в куб залито сырье следующего состава (см. таблицу).

Доведем смесь до кипения (температура в кубе около 92 °C) и отберем небольшое количество дистиллята так, чтобы состав кипящего сырья практически не изменился. Каким будет состав отобранного дистиллята? Для воды и этилового спирта изменение концентраций можно легко найти по кривой равновесия или таблицам: концентрация спирта возрастет с 12 до 59%.

фото кривой равновесия воды и этилового спирта
Кривая равновесия воды и этилового спирта

Чтобы определить изменение концентрации примесей, воспользуемся графиком коэффициентов ректификации (крепость в процентах от объема – на верхней горизонтальной оси).

коефициенты ректификации разных веществ

При крепости сырья 12% коэффициент ректификации (Кр) метилового спирта равен 0,67, а Кр изоамилола – 2,1.  Значит, содержание метанола в отборе уменьшится, а изоамилола – возрастет в два раза. В результате получается.

Вторая таблица доказывает независимость скорости испарения примесей от температуры их кипения. Метанол с температурой кипения 65 °C медленнее покидает куб, чем изоамилол с температурой кипения 132 градуса.

Это происходит потому что концентрация этих примесей мала. Если бы количество метанола и изоамилола было сопоставимо со спиртом и водой, эти вещества заявили бы о своем праве на испарение в количестве, соответствующем разнице их температур кипения, и стали бы полноправными составляющими раствора.

Испаряемость примесей в концентрации менее 2% полностью зависит от того, с какой силой их одинокие молекулы удерживаются водно-спиртовым раствором (преобладающими в составе веществами). Это можно сравнить с тем, как папа и мама не спрашивают ребенка с какой скоростью бежать на автобус – взяли за руки и галопом.

Так и с примесями. Когда в растворе одну маленькую молекулу метанола окружает толпа молекул воды, то они легко удерживают её рядом с собой. Поскольку молекула метанола меньше этанола, то воде удерживать её намного легче. А вот изоамилол, наоборот, плохо растворяется в воде, имея с ней очень слабые связи. При кипении изоамилол вылетает из воды быстрее метанола, хотя температура его кипения в 2 раза выше.

Исследованию коэффициентов испарения или летучести различных веществ и их растворов посвятил немало своих трудов Сорель. Он составил таблицы и графики, по которым можно узнать, насколько меняется содержание веществ в парах по отношению к исходному раствору. Однако для целей винокурения графиками и таблицами пользоваться неудобно, поэтому Барбе предложил новый расчетный коэффициент, названный коэффициентом ректификации (Кр), для получения которого нужно при заданной крепости раствора разделить коэффициент испарения примеси на коэффициент испарения этилового спирта.

Коэффициент ректификации одновременно является и коэффициентом очистки, так как показывает фактическое изменение содержания примесей по отношению к этиловому спирту:

  • Кр=1 – от примесей нельзя избавиться, они в том же количестве будут присутствовать в дистилляте;
  • Кр>1 – в отборе примесей будет больше, чем в исходном сырье, это головные фракции;
  • Кр<1 – в полученном в результате перегонки дистилляте количество примесей будет меньше, чем в исходном сырье, произойдет очистка, это хвостовые фракции.

Если примеси при высоких концентрациях спирта имеют Кр<1, а при низких Кр>1 – это промежуточные примеси. Таких абсолютное большинство. Есть еще и концевые примеси, у которых, наоборот, Кр>1 при высокой концентрации спирта, а при низкой – Кр<1.

На самом деле абсолютно головных или хвостовых примесей не так уж и много, чаще винокуры имеют дело с промежуточными. Однако если говорить о перегонке браги, то её крепость меняется во время процесса с 12% и ниже. При таких концентрациях спирта практически все примеси являются головными, независимо от температуры их кипения: изоамилол – 132 °C, ацетальдегид – 20 °C и т.д.

Примесей, проявляющих хвостовые свойства, при перегонке браги совсем немного: метанол с температурой кипения 65 градусов и фурфурол – 162 °C. Как видим, и здесь температура кипения ни на что не влияет.

Главный теоретический вывод. Примеси не выстраиваются в очередь на выход из куба в соответствии с температурами своего кипения, а испаряются в составе спиртового пара в количествах, зависящих только от их исходной концентрации и коэффициента ректификации.

Мощность нагрева и температура кипения раствора

Мощность нагрева влияет только на количество образуемого пара и никак не изменяет температуру кипения содержимого куба. В свою очередь, температура кипения раствора зависит от концентрации спирта в кубовой навалке и атмосферного давления (см. таблицу).

зависимость температуры кипения браги от концентрации спирта и атмосферного давления

Чем меньше крепость, тем выше температура кипения кубовой навалки. Чем больше подаваемая мощность, тем больше пара образуется.

Дробная дистилляция

Если при кипячении смеси по пути в холодильник её пары не конденсируются на крышке и стенках куба, или эта величина пренебрежимо мала, то отбирая погон последовательно по разным банкам, получим в них разную крепость и состав дистиллята.

Это простая дробная дистилляция, управлять которой можно лишь условно, изменяя пропорции отбираемых фракций. Никакой очистки или укрепления метод не предусматривает.

Если аппарат идеально утеплить, то не зависимо от скорости отбора и мощности нагрева, на выходе будет дистиллят одинакового состава и крепости.

Парциальная конденсация

Если по пути из куба в холодильник заметная часть пара конденсируется – это парциальная конденсация.

Стенки куба, крышка и паровая труба непрерывно теряют тепло. Эти теплопотери зависят не от величины нагрева или отбора, а только от разницы температур между кубовым содержимым (жидкость и пар) и окружающим воздухом.

Следствием этого полезного при дистилляции процесса является парциальная конденсация пара, когда во флегму попадают наименее летучие его составляющие, которые потом обратно стекают в куб.

Та же часть пара, которая доходит до холодильника, содержит легколетучих составляющих больше, чем было в исходных парах. Это позволяет создавать условия для более концентрированного отбора «голов» и укреплять отбор.

Отношение веса флегмы к весу отобранного спирта называют флегмовым числом. Чем выше флегмовое число, тем больше укрепление и обогащение легколетучими составляющими отбора.

Важно также отметить, что стекающая в куб флегма прогревается, вызывая дополнительную конденсацию пара, но закипеть не успевает.

Тепломассобмен

Если флегма стекает в куб так долго, что пар успевает согреть её до точки кипения, происходит другой процесс – тепломассообмен, при котором из пара конденсируются молекулы труднолетучих веществ, а из флегмы испаряются легколетучие. Испаряется и конденсируется всегда равное количество молекул. Этот процесс лежит в основе технологии ректификации.

Как гнать самогон на обычном аппарате

Познакомившись с некоторыми вопросами теории, можно приступить к вопросу об управлении процессом дистилляции.

Аппараты для классической дистилляции строятся по схеме куб-холодильник. Добавление сухопарника облегчает отбор «тела» на высоких скоростях, так как препятствует брызгоуносу. Куб и паровые трубы не утепляют, и как мы выясним позже, – не случайно. Дистилляторы могут быть разными (см. фото).

фото видов самогонных аппаратов для перегонки браги

Принципиально эти аппараты отличаются только степенью парциальной конденсации. При её незначительной доле аппарат годится только для перегонки браги, при большой парциальной конденсации подходит для производства благородных дистиллятов.

Перегонка браги

Брагу нужно гнать быстро. Главной задачей является отделить все испаряемые составляющие от не испаряемых. Снижение мощности в начале или в конце нагрева не требуется. При первой перегонке браги на аламбике желательно накрыть его купол тряпкой.

Обычную сахарную брагу можно отбирать «досуха» (минимальной крепости в струе). В случае с фруктовыми брагами, которые планируется выдерживать в бочках, желательно гнать до средней по погону крепости 25%. Если закончить процесс раньше, будут потеряны кислоты и тяжелые спирты, которые образуют новые эфиры в бочке.

Вторая перегонка

Крепость навалки. Оптимальная крепость кубовой жидкости для второго перегона составляет 25-30%. При такой концентрации спирта сивуха достаточно хорошо укрепляется и выводится в составе головной фракции. В «хвосты» попадет приемлемо небольшая доля спирта, но при отборе «тела» сивуху в кубе удержать не удастся или потребуется флегмовое число более 3, что серьёзно затянет процесс перегонки, да и не каждый аппарат может работать в таком режиме.

Меньшая исходная крепость навалки позволит сивухе во время отбора «голов» выходить с концентрацией выше кубовой более чем в два раза, но отбор «тела» будет начинаться при слишком малой крепости навалки, в результате почти половина спирта попадет в «хвосты», которые нужно начинать отбирать при крепости жидкости в кубе 5-10%.

Если повысить крепость кубовой навалки до 35-40% и больше, то укрепления сивухи при малых флегмовых числах не произойдет. В «головах» будет столько же сивухи, сколько и в кубовом остатке, а при капельном отборе (повышении флегмовых чисел) сивуха вообще останется в кубе.

Отбор «тела» пройдет с меньшими потерями спирта в «хвосты», но вся оставшаяся в кубе сивуха попадет в «тело». За счет того, что объем спирта в отборе уменьшится, концентрация сивухи будет даже больше, чем в навалке.

Отбор «голов». Рассмотрим, что происходит при отборе «голов» на классическом самогонном аппарате. Например, кубовая навалка крепостью 25-30% закипела, и винокур снизил мощность нагрева до 600 Вт. При этом теплопотери паровой зоны составляют 300 Вт (теплопотерями в жидкостной зоне пренебрежем для простоты расчетов). В результате из образовавшегося в кубе пара ровно половина сконденсируется. Количество отбора будет равно количеству флегмы, значит, флегмовое число равно единице. Увеличение мощности нагрева приведет к уменьшению флегмового числа и, наоборот, – дальнейшее уменьшение мощности увеличит его.

При организации покапельного отбора «голов» система выходит на максимальное флегмовое число, что дает укрепление и обогащение отбора легколетучими примесями.

Во время дистилляции навалка имеет низкую крепость, а практически все примеси являются головными.  Поэтому отбор «голов» крайне важен, необходимо создавать условия для его успешного осуществления:

  • всегда оставлять достаточно большую паровую зону в кубе, а не гнаться за объемом навалки;
  • не утеплять куб с крышкой и паровую трубу дистиллятора.

Получение «тела». Скорость отбора «тела» при второй дробной перегонке должна быть умеренной, чтобы не сводить флегмовое число к минимуму.

Большинство бытовых классических аппаратов не обладают достаточными возможностями парциальной конденсации, поэтому получить на них приемлемую очистку «тела» можно всего двумя способами: вывести примеси с «головами» или отсечь их с «хвостами».

Когда собирать «хвосты». Распространенное мнение, что момент для перехода на отбор «хвостов» наступает, когда крепость в струе 40%, имеет под собой прочную почву.

Промежуточные примеси увеличивают свой коэффициент ректификации до величин, превышающих единицу, и становятся легко летучей составляющей пара, значит, уже не переходят во флегму, а продолжают путь в отбор. Конденсируется же в основном вода и типично хвостовые примеси. Парциальная конденсация перестает очищать от сивухи пары спирта, а наоборот –обогащает.

В момент отбора «хвостов» кубовая температура составляет около 96 °C, что соответствует кубовой крепости порядка 5%. «Хвосты» можно отбирать до 98-99 градусов в кубе, совсем до суха не нужно, появится слишком много примесей и воды.

В качестве альтернативы рекомендую ознакомиться с другими методами разделения дистиллята на фракции, которые подходят даже для аппаратов без термометра.

Перегонка на бражных и ректификационных колоннах

Работа с бражными и ректификационными колоннами в корне отличается от процесса классической дистилляции, так как появляется возможность с помощью дефлегматора регулировать количество возвращаемой в колонну флегмы в очень широких пределах. В основе процессов лежит тепломассобмен. Для того чтобы поднять эффективность процесса, в колонну насыпают насадку, значительно увеличивающую площадь взаимодействия пара и флегмы.

Процесс же парциальной конденсации, при котором образуется дикая флегма, становится нежелательным явлением, ухудшающим точность регулирования флегмового числа и разделения на фракции по высоте колонны. Поэтому парциальную конденсацию стараются минимизировать путем утепления куба и колонны.

Поведение примесей при ректификации подчиняется их коэффициентам ректификации, но технология имеет особенности, главная из которых – многократное испарение и конденсация пара по пути из куба к холодильнику.

Каждое такое переиспарение происходит на определенном участке по высоте колонны, называемой теоретической тарелкой. На первых 20-30 см насадочной части колонны за счет неоднократного переиспарения пар получает укрепление до величины выше 90%. При этом примеси, вылетающие из куба в составе пара, при прохождении каждой последующей теоретической тарелки будут менять свой Кр в соответствии с крепостью флегмы или пара, в которых они находятся.

Поэтому сивушные масла, имеющие на входе в колонну Кр больше единицы, по мере продвижения вверх по колонне приобретают Кр меньше единицы, и всё в меньшем количестве переиспаряются, а на определенном этапе полностью останавливаются. Накопление сивушных масел происходит в той части колонны, где их Кр=1. Выше сивуху не пускает спирт, для которого она при этой крепости является «хвостом», а ниже сивушные масла проявляют головные свойства, и при переиспарении поднимаются опять выше. Примерно так ведут себя все промежуточные примеси.

Температура кипения метилового спирта
1 —головные; 2 — промежуточные; 3 —хвостовые; 4 — концевые.

Головные примеси по мере продвижения вверх по колонне попадают во все более укрепленный пар, в результате их Кр возрастает. Это позволяет головным примесям с ускорением попадать в зону отбора.

Хвостовые примеси – строго наоборот, попав в колонну, с каждой новой теоретической тарелкой резко уменьшают свой Кр и довольно быстро вместе с флегмой оказываются внизу колонны, где и накапливаются.

Концевые примеси ведут себя похоже: при низкой крепости их Кр<1, но с ростом крепости Кр становится больше 1, поэтому они не застревают в колонне, а в зависимости от крепости идут вверх или вниз отбора.

Управление колонной сводится к простому правилу: нельзя отбирать фракцию со скоростью, превышающей скорость её поступления в колонну. Методы определения момента, когда эта скорость начинает превышаться, разнообразны. Главное, как можно раньше понять, что равновесие нарушено, и, сократив скорость отбора, восстановить его.

В самом простом варианте управление возможно по двум термометрам:

  • кубовому, показывающему момент закипания спирта-сырца в кубе, перехода на отбор «хвостов» и окончания процесса;
  • термометру, находящемуся в 20 см от низа насадки. В этой зоне все переходные процессы завершены, температура более-менее стабильна и отражает процессы, происходящие в колонне с максимальным упреждением по отношению к зоне отбора. Повышение температуры даже на 0,1 градуса говорит о том, что отбирается слишком много спирта – больше, чем его поступает в колонну, поэтому нужно уменьшить скорость отбора. Если не сократить отбор, разделение на фракции в колонне ухудшится, а примеси из установившегося для них равновесного положения продвинутся выше по колонне, ближе к отбору.

При ректификации за счет принудительной дефлегмации и четкого управления флегмовым числом на выходе получаются самые легколетучие фракции, которые можно отбирать последовательно. Кроме того, грамотное управление колонной позволяет останавливать в ней продвижение ненужных примесей в зону отбора, накапливать их до определенного времени в колонне или вообще возвращать в куб.

Ректификационная колонна – это не столько точный, а скорее мощный инструмент для тотальной очистки спирта от примесей. Для получения благородных дистиллятов он слабо применим, поскольку требует особых технологий и методов. Группирование примесей по летучести и высокая концентрация спирта в колонне создают из них азеотропы без разбора на нужные и ненужные, разделить их уже не удастся.

При получении благородных дистиллятов целью является не полная очистка спирта от всех примесей, а сбалансированное уменьшение их концентраций с частичным удалением некоторых самых ненужных. Требуется аппарат с парциальной конденсацией, работая на котором винокур разделяет дистиллят на части, а затем собирает из этой мозаики шедевр.

При всей внешней разнице, в основе управления дистилляцией и ректификацией лежат важнейшие свойства примесей – их летучесть и связанные с ней коэффициенты ректификации.  Управляя флегмовым числом в весьма ограниченном (при дистилляции) или, наоборот, очень широком (при ректификации) диапазонах, можно получать очень разный продукт: от сбалансированного по примесям дистиллята до чистого спирта. Главное понимать принципы управления и пользоваться в каждом случае подходящим инструментом.

P.S. 30.03.2018 статья была дополнена и существенно переработана, комментарии до этой даты утратили актуальность.

alcofan.com

В условиях нормального атмосферного давления температура кипения спирта составляет 78,3 °С (для этанола). При этом следует учитывать, что данная температура всегда остается неизменной, даже в том случае, когда подвод тепла осуществляется непрерывно. Такая особенность процесса объясняется тем, что превращение жидкого вещества в пар происходит также при достижении некоторого фиксированного для данного вещества значения температуры – теплоты испарения.

При возрастании молекулярной массы температура кипения спирта повышается, при этом пропорция имеет обратный вид для спиртов, стоящих близко в ряду, начиная от этилового. Численно ее значение гораздо выше, чем такой же показатель у эфиров или углеводородов, которые имеют одинаковую молекулярную массу. Соответственно, эта закономерность распространяется и на производные от этих веществ. Это свойство объясняется наличием в спиртах молекулярной ассоциации из-за присутствия в составе гидроксильных групп.

Во многом температура кипения спирта определяется его химическим строением. Тут присутствует такая универсальная закономерность: чем больше состав спирта отличается от классического строения, тем температура его кипения ниже.

При сравнении температур кипения различных спиртов с температурами кипения производных от них простых эфиров обнаруживается уникальная закономерность — спирты обладают практически аномальными по величине, очень высокими температурами.

Более закономерной является зависимость температуры кипения от величины значения молекулярного веса конкретного спирта. Например, температура кипения этилового спирта составляет 78,15 °C при молекулярной массе 46,069 а. е. м. В то же время, аналогичные показатели у метилового составляют соответственно 64,7 °С и 32,04 а. е. м. Такая же закономерность характерна для всех спиртов.

Гидролиз спирта, как правило, осуществляется при достижении им точки кипения, это довольно продолжительный по времени процесс, длящийся около десяти часов.

Такой параметр как температура горения спирта во многом определяет широту применения этих соединений в промышленности и быту. Однако тут следует учитывать такой аспект как тип горения. Реакции горения классифицируют на четыре группы. Первый тип включает в себя все процессы горения, которые происходят за счет поступающего кислорода, содержащегося в окружающем воздухе. К нему относятся реакции горения нефти, а также спирта. Данный процесс выражается следующей формулой: C2H5OH + 3O2 + 11,3 N2 = 2CO2 + 3H2O + 11,3N2.

Исследуя данную формулу, следует иметь ввиду, что она не отражает в полном смысле всех химических превращений, которые происходят с веществами, принимающими участие в реакции горения. Формула составляется из соображений, что воздух состоит только из кислорода и азота, присутствие в нем инертных газов принимается равным нулю.

Рассматриваемый нами параметр — температура кипения спирта — обуславливает его многообразное использование. Это использование нам наиболее известно как применение спиртов в качестве горючих материалов и составляющего вещества различных типов моторного топлива. Для этих целей, как правило, используются метанол, этанол и бутанол, которые производятся во всем мире в промышленных объемах. Такие объемы производства обусловлены их коммерческой доступностью и высокой конъюнктурой на рынке, более того, эти производства в некоторых случаях используются в качестве критериев показателей технологического уровня государства. Отдельными технологическими направлениями выступают производство биодизеля, растворителей, красок и многих других продуктов, перечислить которые просто невозможно в одной небольшой статье.

fb.ru

Содержание

  • 1 История
  • 2 Получение
  • 3 Применение
    • 3.1 Гомологизация метанола
    • 3.2 Биометанол
  • 4 Метанол в качестве топлива
  • 5 Свойства метанола и его реакции
  • 6 Нахождение в природе
  • 7 Токсичность
  • 8 Случаи массового отравления
  • 9 См. также
  • 10 Примечания
  • 11 Ссылки

История

Метанол был впервые обнаружен Бойлем в 1661 году в продуктах сухой перегонки древесины. Через два столетия, в 1834 году, его выделили в чистом виде Думас и Пелигот. Тогда же была установлена химическая формула метанола. В 1857 году Бертло получил метанол омылением метилхлорида.

Получение

Известно несколько способов получения метанола: сухая перегонка древесины и лигнина, термическое разложение солей муравьиной кислоты, синтез из метана через метилхлорид с последующим омылением, неполное окисление метана и получение из синтез-газа. Первоначально в промышленности был освоен метод получения метанола сухой перегонкой древесины, но впоследствии он потерял свое промышленное значение. Современное производство метанола из монооксида углерода и водорода впервые было осуществлено в Германии компанией BASF в 1923 году. Процесс проводился под давлением 25-35 МПа на цинк-хромовом катализаторе (ZnO/Cr2O3) при температуре 320—450 °C. Впоследствии распространение получил синтез метанола на медьсодержащих катализаторах, промотированных цинком, хромом и др., при 200—300 °C и давлении 3,5—5,5 МПа, разработанный в Англии.

Современный промышленный метод получения — синтез из оксида углерода(II) и водорода на медь-цинковом оксидном катализаторе при следующих условиях:

  • температура — 250 °C,
  • давление — 7МПа (= 70 атм = 70 Бар = 71,38 кгс/см²)

Схема механизма каталитического получения метанола сложна и суммарно может быть представлена в виде реакции:

CO + 2 H2 → CH3OH

До промышленного освоения каталитического способа получения метанол получали при сухой перегонке дерева (отсюда его название «древесный спирт»). В данное время этот способ не актуален.

Молекулярная формула — CH4O или CH3—OH, а структурная:

Производство метанола (в тыс. тон):

год США Германия Мир Цена продажи($/т)
1928 24 18 140 84,7
1936 97 93 305 88,9
1950 360 120 349 83,1
1960 892 297 3930 99,7
1970 2238 нет данных 5000 89,7
1980 3176 870 15000 236,1
2004 3700 2000 32000 270

Крупнейшим производителем метанола в России является ОАО «Метафракс» в Губахе.

Применение

В органической химии метанол используется в качестве растворителя.

Метанол используется в газовой промышленности для борьбы с образованием гидратов (из-за низкой температуры замерзания и хорошей растворимости). В органическом синтезе метанол применяют для выпуска формальдегида, формалина, уксусной кислоты и ряда эфиров (например, МТБЭ и ДМЭ), изопрена и др.

Наибольшее его количество идёт на производство формальдегида, который используется для производства карбамидоформальдегидных и фенолформальдегидных смол. Значительные количества CH3OH используют в лакокрасочной промышленности для изготовления растворителей при производстве лаков. Кроме того, его применяют (ограниченно из-за гигроскопичности и отслаивания) как добавку к жидкому топливу для двигателей внутреннего сгорания. Используется в топливных элементах.

Благодаря высокому октановому числу, что позволяет увеличить степень сжатия до 16 и большей на 20 % энергетической мощностью заряда на основе метанола и воздуха, метанол используется для заправки гоночных мотоциклов и автомобилей. Метанол горит в воздушной среде, и при его окислении образуется двуокись углерода и вода:

Для получения биодизеля растительное масло переэтерифицируется метанолом при температуре 60 °C и нормальном давлении приблизительно так: 1 т масла + 200 кг метанола + гидроксид калия или натрия.

Во многих странах метанол применяется в качестве денатурирующей добавки к этанолу при производстве парфюмерии. В России использование метанола в потребительских товарах запрещено.

При добыче газа гидраты могут образовываться в стволах скважин, промысловых коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли).

Работа топливных элементов основана на реакции окисления метанола на катализаторе в диоксид углерода. Вода выделяется на катоде. Протоны (H+) проходят через протонообменную мембрану к катоду где они реагируют с кислородом и образуют воду. Электроны проходят через внешнюю цепь от анода к катоду снабжая энергией внешнюю нагрузку.

Реакции:

На аноде CH3OH + H2O → CO2 + 6H+ + 6e−

На катоде 1.5O2 + 6H+ + 6e− → 3H2O

Общая для топливного элемента: CH3OH + 1,5O2 → CO2 + 2H2O

Получение муравьиной кислоты окислением метанола:

Получение диметилового эфира дегидратацией метанола при 300—400 °C и 2-3 МПа в присутствии гетерогенных катализаторов — алюмосиликатов — степень превращения метанола в диметиловый эфир — 60 % или цеолитов — селективность процесса близка к 100 %. Диметиловый эфир (C2H6O) — экологически чистое топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90 % меньше, чем у бензина. Цетановое число диметилового дизеля более 55, при том что у классического нефтяного 38-53.

Метил-трет-бутиловый эфир получается при взаимодействии метанола с изобутиленом в присутствии кислых катализаторов (например, ионообменных смол):

Метил-трет-бутиловый эфир (C5H12O) применяется в качестве добавки к моторным топливам, повышающей октановое число бензинов (антидетонатор). Максимальное законодательное содержание МТБЭ в бензинах Европейского союза — 15 %, в Польше — 5 %. В России в среднем составе бензинов содержание МТБЭ составляет до 12 % для АИ92 и до 15 % для АИ95, АИ98.

Гомологизация метанола

Гомологизация, то есть превращение органического соединения в свой гомолог путём внедрения одной или нескольких метиленовых групп, для спиртов была впервые осуществлена в 1940 году — на основе метанола каталитическим путём под воздействием высокого давления был синтезирован этанол:

Реакция гомологизации по своему механизму близка реакции гидроформилирования алкенов и в настоящее время с помощью модифицированных катализаторов кобальта и рутения и добавления йодид-ионов в качестве промоторов удаётся добиться 90 % выхода по этанолу.

Исходный метанол также получают из окиси углерода (катализаторы на основе оксидов меди и цинка, давление 5-10 МПа, температура 250 °C), так что общая схема выглядит следующим образом:

Побочными продуктами реакции в случае синтеза этанола будут ацетальдегид, этилен и диэтиловый эфир.

В 1940 году впервые была осуществлена катализируемая оксидом кобальта при давлении 600 атм реакция метанола с синтез-газом с образованием в качестве основного продукта этанола… Впоследствии эта реакция, названная гомологизацией, вызвала огромный интерес у химиков. Ее привлекательность связана с возможностью получения этилена из угольного сырья Применение в качестве катализаторов карбонила кобальта Со2(СО)8 позволило понизить давление до 250 атм, при этом степень превращения метанола составила 70 %, а основной продукт — этанол образовывался с селективностью 40 %. В дальнейшем были предложены более селективные катализаторы на основе соединений кобальта и рутения с добавками фосфиновых лигандов и было установлено, что реакцию можно ускорить с помощью введения промоторов — иодид-ионов. В настоящее время удалось достичь селективности по этанолу 90 %. Хотя механизм гомологизации до конца не установлен, можно считать, что он близок к механизму карбонилирования метанола.

Биометанол

Промышленное культивирование и биотехнологическая конверсия морского фитопланктона рассматривается как одно из наиболее перспективных направлений в области получения биотоплива.

В начале 80-х рядом европейских стран совместно разрабатывался проект, ориентированный на создание промышленных систем с использованием прибрежных пустынных районов. Осуществлению этого проекта помешало общемировое снижение цен на нефть.

Первичное производство биомассы осуществляется путём культивирования фитопланктона в искусственных водоёмах, создаваемых на морском побережье.

Вторичные процессы представляют собой метановое брожение биомассы и последующее гидроксилирование метана с получением метанола.

Основными доводами в пользу использования микроскопических водорослей являются следующие:

  • высокая продуктивность фитопланктона (до 100 т/га в год);
  • в производстве не используются ни плодородные почвы, ни пресная вода;
  • процесс не конкурирует с сельскохозяйственным производством;
  • энергоотдача процесса достигает 14 на стадии получения метана и 7 на стадии получения метанола;

С точки зрения получения энергии данная биосистема имеет существенные экономические преимущества по сравнению с другими способами преобразования солнечной энергии.

Метанол в качестве топлива

При применении метанола в качестве топлива следует отметить, что объемная и массовая энергоемкость (теплота сгорания) метанола (удельная теплота сгорания = 22,7 МДж/кг) на 40—50 % меньше, чем бензина, однако при этом теплопроизводительность спиртовоздушных и бензиновых топливовоздушных смесей при их сгорании в двигателе различается незначительно по той причине, что высокое значение теплоты испарения метанола способствует улучшению наполнения цилиндров двигателя и снижению его теплонапряженности, что приводит к повышению полноты сгорания спиртовоздушной смеси. В результате этого мощность двигателя повышается на 7-9%, а крутящий момент на 10—15 %. Двигатели гоночных автомобилей работающих на метаноле с более высоким октановым числом чем бензин имеют степень сжатия, превышающую 15:1, в то время как в обычном ДВС с искровым зажиганием степень сжатия для неэтилированного бензина как правило, не превышает 11,5:1. Метанол может использоваться как в классических двигателях внутреннего сгорания, так и в специальных топливных элементах для получения электричества.

Отдельно следует отметить увеличение индикаторного КПД при работе классического ДВС на метаноле по сравнению с его работой на бензине. Такой прирост вызван снижением тепловых потерь и может достигать единиц процентов.

Топливо Плотность
энергии
Смесь воздуха
с топливом
Удельная
энергия
смеси воздуха

с топливом

Удельная теплота
испарения
Октановое число (RON) Октановое число (MON)
Бензин 32 МДж/л 14,6 2,9 МДж/кг воздух 0,36 МДж/кг   91—99   81—89
Бутанол-1 29,2 МДж/л 11,1 3,2 МДж/кг воздух 0,43 МДж/кг   96   78
Этанол 19,6 МДж/л   9,0 3,0 МДж/кг воздух 0,92 МДж/кг 132   89
Метанол 16 МДж/л   6,4 3,1 МДж/кг воздух 1,2 МДж/кг 156 92

Недостатки

  • Метанол травит алюминий. Проблемным является использование алюминиевых карбюраторов и инжекторных систем подачи топлива в ДВС. Это относится в основном к метанолу-сырцу, содержащему значительные количества примесей муравьиной кислоты и формальдегида. Технически чистый метанол, содержащий воду, начинает реагировать с алюминием при температуре выше 50 °C, а с обычной углеродистой сталью не реагирует вовсе.
  • Гидрофильность. Метанол втягивает воду, что является причиной расслоения топливных смесей бензин-метанол.
  • Метанол, как и этанол, повышает пропускную способность пластмассовых испарений для некоторых пластмасс (например, плотного полиэтилена). Эта особенность метанола повышает риск увеличения эмиссии летучих органических веществ, что может привести к уменьшению концентрации озона и усилению солнечной радиации.
  • Уменьшенная летучесть при холодной погоде: моторы, работающие на чистом метаноле, могут иметь проблемы с запуском при температуре ниже +10 °C и отличаться повышенным расходом топлива до достижения рабочей температуры. Данная проблема однако, легко решается добавлением в метанол 10—25 % бензина.

Низкий уровень примесей метанола может быть использован в топливе существующих транспортных средств с использованием надлежащих ингибиторов коррозии. Т. н. европейская директива качества топлива (European Fuel Quality Directive) позволяет использовать до 3 % метанола с равным количеством присадок в бензине, продаваемoм в Европе. Сегодня в Китае используется более 1000 млн галлонов метанола в год в качестве транспортного топлива в смесях низкого уровня, используемых в существующих транспортных средств, а также высокоуровневые смеси в транспортных средствах, предназначенных для использования метанола в качестве топлива.

Помимо применения метанола в качестве альтернативы бензина существует технология применения метанола для создания на его базе угольной суспензии которая в США имеет коммерческое наименование «метакол» (methacoal). Такое топливо предлагается как альтернатива мазута, широко используемого для отопления зданий (Топочный мазут). Такая суспензия в отличие от водоуглеродного топлива не требует специальных котлов и имеет более высокую энергоемкость. С экологической точки зрения такое топливо имеет меньший «углеродный след», чем традиционные варианты синтетического топлива получаемого из угля с использованием процессов, где часть угля сжигается во время производства жидкого топлива.

Свойства метанола и его реакции

При написании этой статьи использовался материал из Энциклопедического словаря Брокгауза и Ефрона (1890—1907).

Метанол — бесцветная жидкость с запахом этилового спирта

. Температура кипения 64,7°.

Удельный вес при 0°/0° = 0,8142 (Копп); при 15°/15° = 0,79726; при 25°/25° = 0,78941 (Perkin); при 64,8°/4° = 0,7476 (Шифф); при 0°/4° = 0,81015; при 15,56°/4° = 0,79589 (Dittmar и Fawsitt). Капиллярная постоянная при температуре кипения a ² =5,107 (Шифф); Критическая температура 241,9° (Шмидт). Упругость пара при 15° = 72,4 мм; при 29,3° = 153,4 мм; при 43° = 292,4 мм; при 53° = 470,3 мм; при 65,4° = 756,6 мм (Д. Коновалов). Теплота горения равна 170,6, теплота образования 61,4 (Штоман, Клебер и Лангбейн).

Метанол смешивается во всех отношениях с водой, этиловым спиртом и эфиром; при смешении с водой происходит сжатие и разогревание. Горит синеватым пламенем. Подобно этиловому спирту — сильный растворитель, вследствие чего во многих случаях может заменять этиловый спирт. Безводный метанол, растворяя небольшое количество медного купороса, приобретает голубовато-зеленое окрашивание, поэтому безводным медным купоросом нельзя пользоваться для открытия следов воды в метаноле; но он не растворяет CuSO4.7H2O (Клепль).

Метанол (в отличие от этанола) с водой не образует азеотропной смеси, в результате чего смеси вода-метанол могут быть разделены ректификационной перегонкой. Температура кипения водных растворов метанола:

Methanol Mole % Т_кип, 760 мм.рт.ст. °C
0 100
5 92.8
10 88.3
15 84.8
20 82
25 80.1
30 78.2
35 76.8
40 75.6
45 74.5
50 73.5
55 72.4
60 71.6
65 70.7
70 69.8
75 68.9
80 68
85 67.1
90 66.3
95 65.4
100 64.6

Метанол дает со многими солями соединения, подобные кристаллогидратам (сольваты), например: CuSO4 ∙ 2СН3ОН; LiCl ∙ 3СН3ОН; MgCl2 ∙ 6СН3ОН; CaCl2 ∙ 4СН3ОН представляет собой шестисторонние таблицы, разлагаемые водой, но не разрушаемые нагреванием до 100° (Kane). Соединение ВаО ∙ 2СН3ОН ∙ 2Н2O получается в виде блестящих призм при растворении ВаО в водном Метаноле и испарении на холоде полученной жидкости при комнатной температуре (Форкранд).

С едкими щелочами метанол образует соединения 5NaOH ∙ 6СН3ОН; 3KOH ∙ 5СН3OH (Геттиг). При действии металлических калия и натрия легко дает алкоголяты, присоединяющие к себе кристаллизационный метанол и иногда воду.

При пропускании паров метанола через докрасна накаленную трубку получается C2H2 и др. продукты (Бертло). При пропускании паров метанола над накаленным цинком получается окись углерода, водород и небольшие количества болотного газа (Jahn). Медленное окисление паров метанола при помощи раскаленной платиновой или медной проволоки представляет лучшее средство для получения больших количеств формальдегида: 2СН3ОН+О2=2НСНО+2Н2О. При действии хлористого цинка и высокой температуры метанол дает воду и алканы, а также небольшие количества гексаметилбензола (Лебедь и Грин). Метанол, нагретый с нашатырем в запаянной трубке до 300°, дает моно-, ди- и триметиламины (Бертло).

При пропускании паров метанола над KOH при высокой температуре выделяется водород и образуются последовательно муравьинокислый, щавелевокислый и, наконец, углекислый калий.

Концентрированная серная кислота дает метилсерную кислоту CH3HSO4, которая при дальнейшем нагревании с Метанолом дает метиловый эфир (см.). При перегонке метанола с избытком серной кислоты в отгон переходит диметилсерная кислота (CH3)2SO4. При действии серного ангидрида SO3 получается CH(OH)(SO3H)2 и CH2(SO3H)2 (см. Метилен).

Метанол при действии соляной кислоты, пятихлористого фосфора и хлористой серы дает хлористый метил СН3Cl. Действием HBr и H2SO4 получают бромистый метил. Подкисленный 5%-й серной кислотой и подвергнутый электролизу, метанол дает СО2, СО, муравьинометиловый эфир, метилсерную кислоту и метилаль СН2(ОСН3)2 (Ренар). При нагревании метанола с хлористо-водородными солями ароматических оснований (анилином, ксилидином, пиперидином) легко происходит замещение водорода в бензольном ядре метилом (Гофман, Ладенбург); реакция имеет большое техническое значение при приготовлении метилрозанилина и других искусственных пигментов.

Нахождение в природе

В свободном состоянии метиловый спирт встречается в природе лишь изредка и в очень небольших количествах (например в эфирных маслах), но производные его распространены довольно широко. Так, например, многие растительные масла содержат сложные эфиры метилового спирта: масла гаултерии — метиловый эфир салициловой кислоты С6H4(OH)COOCH3, масло жасмина — метиловый эфир антраниловой кислоты С6H4(NH2)COOCH3. Простые эфиры метилового спирта чрезвычайно часто встречаются среди природных веществ, например природных красителей, алкалоидов и т. п.

В промышленности метиловый спирт раньше получали исключительно путём сухой перегонки дерева. В жидких погонах, так называемом «древесном уксусе», наряду с уксусной кислотой (10 %), ацетоном (до 0,5 %), ацетальдегидом, аллиловым спиртом, метилацетатом, аммиаком и аминами содержится также 1,5-3 % метилового спирта. Для отделения уксусной кислоты продукты сухой перегонки пропускают через горячий раствор известкового молока, задерживающий её в виде уксуснокислого кальция. Значительно труднее отделить метиловый спирт от ацетона, так как температуры кипения их очень близки (ацетон, т.кип. 56,5°; метиловый спирт, т.кип. 64,7°). Все же путём тщательной ректификации на соответствующих колоннах в технике удается почти полностью отделить метиловый спирт от сопутствующего ему ацетона. Неочищенный метиловый спирт называется также «древесным спиртом».

Токсичность

Метанол — опаснейший яд, приём внутрь 5—10 мл метанола приводит к тяжёлому отравлению (одно из последствий — слепота), а 30 граммов и более — к смерти. Предельно допустимая концентрация метанола в воздухе рабочей зоны равна 5 мг/м³ (у изопропилового спирта 10 мг/м³, у этанола — 1000 мг/м³).

Наиболее легкая форма отравления характеризуется наличием головной боли, общей слабостью, недомоганием, ознобом, тошнотой, рвотой. Поэтому опасен для жизни не только чистый метанол, но и жидкости, содержащие этот яд даже в сравнительно небольшом количестве.

Особая опасность метанола связана с тем, что по запаху и вкусу он неотличим от этилового спирта, из-за чего и происходят случаи его употребления внутрь. Йодоформная реакция: с этиловым спиртом выпадет йодоформ желтого цвета, а с метанолом ничего не выпадает (реакция не подходит для определения содержания метанола в растворе этанола).

Как указано в руководстве для врача скорой медицинской помощи, при отравлении метанолом антидотом является этанол, который вводится внутривенно в форме 10 % раствора капельно или 30—40 % раствора перорально из расчёта 1—2 грамма раствора на 1 кг веса в сутки. Полезный эффект в этом случае обеспечивается отвлечением АДГ I на окисление экзогенного этанола.

Следует учесть, что при недостаточно точном диагнозе за отравление метанолом можно принять алкогольную интоксикацию, отравление дихлорэтаном или четырёххлористым углеродом — в этом случае введение дополнительного количества этилового спирта опасно.

Случаи массового отравления

  • 1-7 мая 1980 года в городе Оренбурге в результате кражи из неохраняемой железнодорожной цистерны большого количества метанола произошло массовое отравление людей как в самом Оренбурге, так и в городах и посёлках области — Соль-Илецке, Саракташе и т. д. В результате отравления более 50 человек погибли, сотни были госпитализированы. Число потерявших зрение и ставших инвалидами вследствие токсического поражения центральной и вегетативной нервной системы неизвестно. Официальных данных о данном случае массового отравления до сих пор нет в открытой печати.
  • 9-10 сентября 2001 года на западе Эстонии, в городе Пярну произошло массовое отравление метиловым спиртом. В результате отравления 68 человек погибли, 40 человек стали инвалидами II степени (в связи с потерей зрения и/или острого поражения мозга и нервной системы) и 3 человека получили инвалидность I степени.
  • В 2010 году в России участились случаи продажи фальсифицированной незамерзающей жидкости для омывателей стёкол автомобилей: она содержит метиловый спирт и может негативно влиять на здоровье водителей, вызывая хроническое отравление парами метанола (при попадании жидкости на кожу при заливке жидкости в бачок, а также за счёт проникновения паров в салон автомобиля). В Европейском Союзе ограничения на использование метанола в незамерзающей жидкости нет.
  • В мае-июле 2011 года 6 российских туристов скончались от отравления метанолом в Турции. Закончившийся трагедией яхт-тур был организован компанией в Бодруме 26-27 мая. С 28 мая в больницы начали поступать российские туристы с жалобами на симптомы острого отравления. Выяснилось, что в напитках, в частности, в коктейле «виски с колой», который употребляли туристы, содержался метанол. Кроме того, прогулочная яхта не имела лицензии на выход в море.
  • В сентябре 2012 года в Чехии расследуют «метиловое дело» — так пресса назвала историю о массовом отравлении контрафактным алкоголем в Чехии за последние 30 лет. Погибли 27 человек, десятки в больницах. Еще четверо умерли в соседней Польше. Ядовитую смесь разливали в бутылки из-под напитка «Туземак» — это чешский аналог рома.
  • В октябре 2013 года в латвийской Елгаве от употребления 99% метанола, приобретённого на нелегальной «точке», погибли 8 человек.
  • 15 марта 2014 года в поселке Красный Великан, Забайкальский край, от метанола погибло 14 человек.

См. также

  • Гидрат метана
  • Экономика метанола
  • Комплексы железа встречаются в ферменте метан-моноксигеназе, окисляющем метан в метанол, в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК.
  • Мессершмитт Ме.163 Комета — немецкий ракетный истребитель-перехватчик времён Второй мировой войны. Me-163 имел жидкостный ракетный двигатель, в который подавалась 80-процентная перекись водорода и жидкий катализатор (раствор перманганата калия либо смесь метанола, гидразин-гидрата и воды). В камере сгорания перекись водорода разлагалась с образованием большого объёма перегретой парогазовой смеси, создавая мощную реактивную тягу.

Примечания

  1. М.М.Караваев, В.Е.Леонов, И.Г. Попов, Е.Т.Шепелев. Технология синтетического метанола. — Москва: Химия, 1984. — 239 с.
  2. Mechanisms for hydrogenation of acetone to isopropanol and of carbon oxides to methanol over copper-containing oxide catalysts T.M. Yurieva, L.M. Plyasova, O.V. Makarova, T.A. Krieger, Journal of Molecular Catalysis A: Chemical, 1996, V. 113, N. 3, P. 455-468.
  3. 1 2 3 Караханов Э.А. ‘ˆ’…‡Синтез-газ как альтернатива нефти. II. Метанол и синтезы на его основе // Соросовский образовательный журнал. — 1997. — № 12. — С. 68.
  4. Синтез-Газ Как Альтернатива Нефти. Часть Ii. Метанол И Синтезы На Его Основе — Караханов Э.А
  5. Waganer K. Mariculture on land. — Biomass, 1981
  6. Ethanol and Energy Independence — Journey to Energy Independence
  7. Pierre Duret. New Generation of Engine Combustion Processes for the Future?, 2002
  8. Internal Combustion Engines, Edward F. Obert, 1973
  9. Energy Citations Database (ECD) — — Document #6329346
  10. en:Carbon footprint
  11. П.КАРРЕР (1960 г.), «Курс органической химии», стр.117
  12. ГОСТ 9805-84. Спирт изопропиловый. Технические условия. Настоящий стандарт распространяется на изопропиловый спирт, получаемый гидратацией пропилена
  13. Nordoc.ru — ГН 2.1.6.695-98. Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест
  14. как отличить этанол от метанола? — Форум химиков на XuMuK.ru
  15. 1 2 Острые отравления — Электронное справочное руководство для врача скорой медицинской помощи. Глава 15
  16. 3-pdf-prin_ash-2.pmd
  17. Чем «незамерзайка» опасна для здоровья водителей
  18. В Чехии расследуют историю о массовом отравлении контрафактным алкоголем

Ссылки

  • Автомобилистам: осторожно, замерзайка!
  • Метанол в качестве топлива; Топливный метанол!
  • Метанол убивает человека и природу (статья на сайте экологический правозащитного центра «Беллона»)
  • ГОСТ 2222-95 «Метанол технический» (взамен ГОСТ 2222-78)
  • Измерение фундаментальных постоянных при помощи метанола

метанол, метанол вода ph раствора, метанол етанол гліцерол, метанол на украине, метанол свойства, метанол формула, метанол характеристика, метанол хемија, метанол хүчтэй хор, метанол цена


Метанол Информацию О

Метанол


www.turkaramamotoru.com



Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *